107 research outputs found

    How the other half lives: CRISPR-Cas's influence on bacteriophages

    Full text link
    CRISPR-Cas is a genetic adaptive immune system unique to prokaryotic cells used to combat phage and plasmid threats. The host cell adapts by incorporating DNA sequences from invading phages or plasmids into its CRISPR locus as spacers. These spacers are expressed as mobile surveillance RNAs that direct CRISPR-associated (Cas) proteins to protect against subsequent attack by the same phages or plasmids. The threat from mobile genetic elements inevitably shapes the CRISPR loci of archaea and bacteria, and simultaneously the CRISPR-Cas immune system drives evolution of these invaders. Here we highlight our recent work, as well as that of others, that seeks to understand phage mechanisms of CRISPR-Cas evasion and conditions for population coexistence of phages with CRISPR-protected prokaryotes.Comment: 24 pages, 8 figure

    Telomeres are shorter in myocardial infarction patients compared to healthy subjects: correlation with environmental risk factors

    Get PDF
    Shorter telomeres have been reported in premature myocardial infarction (MI) patients. Our work aimed at confirming the association of shorter telomere with MI in two case–control studies and in familial hypercholesterolemia (FH) patients with coronary heart disease (CHD). The HIFMECH study compared 598 white male patients (<60 years) who survived a first MI and 653 age-matched controls from North and South Europe. Additionally, from the UK, 413 coronary artery bypass graft (CABG) patients and two groups of 367 and 94 FH patients, of whom 145 and 17 respectively had premature CHD, were recruited. Leukocyte telomere length (LTL) was measured using a real-time polymerase chain reaction-based method. In HIFMECH, LTL was significantly shorter in subjects from the North (7.99 kb, SD 4.51) compared to the South (8.27 kb, SD 4.14; p = 0.02) and in cases (7.85 kb, SD 4.01) compared to controls (8.04 kb, SD 4.46; p = 0.04). In the CABG study, LTL was significantly shorter (6.89 kb, SD 4.14) compared to the HIFMECH UK controls (7.53, SD 5.29; p = 0.007). In both samples of FH patients, LTL was shorter in those with CHD (overall 8.68 kb, SD 4.65) compared to the non-CHD subjects (9.23 kb, SD 4.83; p = 0.012). Apart from a consistent negative correlation with age, LTL was not associated across studies with any measured CHD risk factors. The present data confirms that subjects with CHD have shorter telomeres than controls and extends this to those with monogenic and polygenic forms of CHD

    Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases

    Get PDF
    Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.National Institutes of Health (U.S.) (New Innovator Award 1DP2OD008435)National Centers for Systems Biology (U.S.) (Grant 1P50GM098792)United States. Defense Threat Reduction Agency (HDTRA1-14-1-0007)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (W911NF13D0001)National Institute of General Medical Sciences (U.S.) (Interdepartmental Biotechnology Training Program 5T32 GM008334)Fonds de la recherche en sante du Quebec (Master's Training Award

    Evaluation of bacteriophage as an adjunct therapy for treatment of peri-prosthetic joint infection caused by Staphylococcus aureus

    Get PDF
    Phage therapy offers a potential alternate strategy for the treatment of peri-prosthetic joint infection (PJI), particularly where limited effective antibiotics are available. We undertook preclinical trials to investigate the therapeutic efficacy of a phage cocktail, alone and in combination with vancomycin, to reduce bacterial numbers within the infected joint using a clinically-relevant model of Staphylococcus aureus-induced PJI. Infected animals were randomised to 4 treatment groups, with treatment commencing 21-days post-surgery: bacteriophage alone, vancomycin alone, bacteriophage and vancomycin, and sham. At day 28 post-surgery, animals were euthanised for microbiological and immunological assessment of implanted joints. Treatment with phage alone or vancomycin alone, led to 5-fold and 6.2-fold reductions, respectively in bacterial load within peri-implant tissue compared to shamtreated animals. Compared to sham-treated animals, a 22.5-fold reduction in S. aureus burden was observed within joint tissue of animals that were administered phage in combination with vancomycin, corresponding with decreased swelling in the implanted knee. Microbiological data were supported by evidence of decreased inflammation within the joints of animals administered phage in combination with vancomycin, compared to sham-treated animals. Our findings provide further support for phage therapy as a tolerable and effective adjunct treatment for PJI

    Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Burkholderia cepacia </it>complex (BCC) is comprised of at least seventeen Gram-negative species that cause infections in cystic fibrosis patients. Because BCC bacteria are broadly antibiotic resistant, phage therapy is currently being investigated as a possible alternative treatment for these infections. The purpose of our study was to sequence and characterize three novel BCC-specific phages: KS5 (vB_BceM-KS5 or vB_BmuZ-ATCC 17616), KS14 (vB_BceM-KS14) and KL3 (vB_BamM-KL3 or vB_BceZ-CEP511).</p> <p>Results</p> <p>KS5, KS14 and KL3 are myoviruses with the A1 morphotype. The genomes of these phages are between 32317 and 40555 base pairs in length and are predicted to encode between 44 and 52 proteins. These phages have over 50% of their proteins in common with enterobacteria phage P2 and so can be classified as members of the <it>Peduovirinae </it>subfamily and the "P2-like viruses" genus. The BCC phage proteins similar to those encoded by P2 are predominantly structural components involved in virion morphogenesis. As prophages, KS5 and KL3 integrate into an AMP nucleosidase gene and a threonine tRNA gene, respectively. Unlike other P2-like viruses, the KS14 prophage is maintained as a plasmid. The P2 <it>E+E' </it>translational frameshift site is conserved among these three phages and so they are predicted to use frameshifting for expression of two of their tail proteins. The <it>lysBC </it>genes of KS14 and KL3 are similar to those of P2, but in KS5 the organization of these genes suggests that they may have been acquired via horizontal transfer from a phage similar to λ. KS5 contains two sequence elements that are unique among these three phages: an IS<it>Bmu</it>2-like insertion sequence and a reverse transcriptase gene. KL3 encodes an EcoRII-C endonuclease/methylase pair and Vsr endonuclease that are predicted to function during the lytic cycle to cleave non-self DNA, protect the phage genome and repair methylation-induced mutations.</p> <p>Conclusions</p> <p>KS5, KS14 and KL3 are the first BCC-specific phages to be identified as P2-like. As KS14 has previously been shown to be active against <it>Burkholderia cenocepacia in vivo</it>, genomic characterization of these phages is a crucial first step in the development of these and similar phages for clinical use against the BCC.</p

    An Eye to a Kill: Using Predatory Bacteria to Control Gram-Negative Pathogens Associated with Ocular Infections

    Get PDF
    Ocular infections are a leading cause of vision loss. It has been previously suggested that predatory prokaryotes might be used as live antibiotics to control infections. In this study, Pseudomonas aeruginosa and Serratia marcescens ocular isolates were exposed to the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. All tested S. marcescens isolates were susceptible to predation by B. bacteriovorus strains 109J and HD100. Seven of the 10 P. aeruginosa isolates were susceptible to predation by B. bacteriovorus 109J with 80% being attacked by M. aeruginosavorus. All of the 19 tested isolates were found to be sensitive to at least one predator. To further investigate the effect of the predators on eukaryotic cells, human corneal-limbal epithelial (HCLE) cells were exposed to high concentrations of the predators. Cytotoxicity assays demonstrated that predatory bacteria do not damage ocular surface cells in vitro whereas the P. aeruginosa used as a positive control was highly toxic. Furthermore, no increase in the production of the proinflammatory cytokines IL-8 and TNF-alpha was measured in HCLE cells after exposure to the predators. Finally, injection of high concentration of predatory bacteria into the hemocoel of Galleria mellonella, an established model system used to study microbial pathogenesis, did not result in any measurable negative effect to the host. Our results suggest that predatory bacteria could be considered in the near future as a safe topical bio-control agent to treat ocular infections. © 2013 Shanks et al

    Drosophila melanogaster as a Model Host for the Burkholderia cepacia Complex

    Get PDF
    Colonization with bacterial species from the Burkholderia cepacia complex (Bcc) is associated with fast health decline among individuals with cystic fibrosis. In order to investigate the virulence of the Bcc, several alternative infection models have been developed. To this end, the fruit fly is increasingly used as surrogate host, and its validity to enhance our understanding of host-pathogen relationships has been demonstrated with a variety of microorganisms. Moreover, its relevance as a suitable alternative to mammalian hosts has been confirmed with vertebrate organisms.The aim of this study was to establish Drosophila melanogaster as a surrogate host for species from the Bcc. While the feeding method proved unsuccessful at killing the flies, the pricking technique did generate mortality within the populations. Results obtained with the fruit fly model are comparable with results obtained using mammalian infection models. Furthermore, validity of the Drosophila infection model was confirmed with B. cenocepacia K56-2 mutants known to be less virulent in murine hosts or in other alternative models. Competitive index (CI) analyses were also performed using the fruit fly as host. Results of CI experiments agree with those obtained with mammalian models.We conclude that Drosophila is a useful alternative infection model for Bcc and that fly pricking assays and competition indices are two complementary methods for virulence testing. Moreover, CI results indicate that this method is more sensitive than mortality tests

    Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas aeruginosa through Tyrosine Phosphatase TpbA (PA3885)

    Get PDF
    With the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing based on homoserine lactones was found to influence biofilm formation. Here we discern a mechanism by which quorum sensing controls biofilm formation by screening 5850 transposon mutants of P. aeruginosa PA14 for altered biofilm formation. This screen identified the PA3885 mutant, which had 147-fold more biofilm than the wild-type strain. Loss of PA3885 decreased swimming, abolished swarming, and increased attachment, although this did not affect production of rhamnolipids. The PA3885 mutant also had a wrinkly colony phenotype, formed pronounced pellicles, had substantially more aggregation, and had 28-fold more exopolysaccharide production. Expression of PA3885 in trans reduced biofilm formation and abolished aggregation. Whole transcriptome analysis showed that loss of PA3885 activated expression of the pel locus, an operon that encodes for the synthesis of extracellular matrix polysaccharide. Genetic screening identified that loss of PelABDEG and the PA1120 protein (which contains a GGDEF-motif) suppressed the phenotypes of the PA3885 mutant, suggesting that the function of the PA3885 protein is to regulate 3,5-cyclic diguanylic acid (c-di-GMP) concentrations as a phosphatase since c-di-GMP enhances biofilm formation by activating PelD, and c-di-GMP inhibits swarming. Loss of PA3885 protein increased cellular c-di-GMP concentrations; hence, PA3885 protein is a negative regulator of c-di-GMP production. Purified PA3885 protein has phosphatase activity against phosphotyrosine peptides and is translocated to the periplasm. Las-mediated quorum sensing positively regulates expression of the PA3885 gene. These results show that the PA3885 protein responds to AHL signals and likely dephosphorylates PA1120, which leads to reduced c-di-GMP production. This inhibits matrix exopolysaccharide formation, which leads to reduced biofilm formation; hence, we provide a mechanism for quorum sensing control of biofilm formation through the pel locus and suggest PA3885 should be named TpbA for tyrosine phosphatase related to biofilm formation and PA1120 should be TpbB
    corecore